On approximation measures of certain q-continued fractions

Ville Merilä
University of Oulu, Finland

Abstract

Let \mathbb{K} be an algebraic number field of degree κ over \mathbb{Q}. Let $$
\|*\|_{v}=|*|_{v}^{\kappa_{v} / \kappa}, \quad \kappa_{v}=\left[\mathbb{K}_{v}: \mathbb{Q}_{v}\right],
$$

be the normalized valuation of \mathbb{K} and denote $\lambda=\lambda_{q}=\log H(q) / \log \|q\|_{v}$, where $H(q)$ is the height of $q \in \mathbb{K}^{*}$ satisfying $|q|_{v}<1$. Then the (proper) q-continued fraction

$$
G(q)=\mathbf{K}_{n=1}^{\infty} \frac{q^{s(n-1)}\left(S_{0}+S_{1} q^{n-1}+\ldots+S_{h} q^{h(n-1)}\right)}{T_{0}+T_{1} q^{n}+\ldots+T_{l} q^{l n}}, S_{i}, T_{i} \in \mathbb{K}, S_{0} T_{0} \neq 0,
$$

where $s \geq 1$ and $s+\lambda A>0$, has an approximation measure (exponent) $\mu=s \kappa / \kappa_{\nu}(s+A \lambda)$ where $A=\max \{l,(s+h) / 2\}$.

The results imply, for example, irrationality measures $\mu=3 /(3+$ 2λ) for the famous Ramanujan-Selberg continued fractions

$$
\begin{aligned}
& S_{1}(q)=\frac{\left(-q^{2} ; q^{2}\right)_{\infty}}{\left(-q ; q^{2}\right)_{\infty}}=\frac{1}{1}+\frac{q}{1}+\frac{q^{2}+q}{1}+\frac{q^{3}}{1}+\frac{q^{4}+q^{2}}{1}+\ldots \\
& S_{2}(q)=\frac{\left(q ; q^{8}\right)_{\infty}\left(q^{7} ; q^{8}\right)_{\infty}}{\left(q^{3} ; q^{8}\right)_{\infty}\left(q^{5} ; q^{8}\right)_{\infty}}=\frac{1}{1}+\frac{q+q^{2}}{1}+\frac{q^{4}}{1}+\frac{q^{3}+q^{6}}{1}+\frac{q^{8}}{1}+\ldots
\end{aligned}
$$

and for Eisenstein's continued fraction

$$
E_{1}(q)=\sum_{n=0}^{\infty} q^{n^{2}}=\frac{1}{1}-\frac{q}{1}-\frac{q^{3}-q}{1}-\frac{q^{5}}{1}-\frac{q^{7}-q^{3}}{1}-\ldots
$$

related to the Jacobi Theta functions.

