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Abstract

Let K be an algebraic number field of degree κ over Q. Let

|| ∗ ||v = | ∗ |κv/κ
v , κv = [Kv : Qv],

be the normalized valuation ofK and denote λ = λq = log H(q)/ log ||q||v,
where H(q) is the height of q ∈ K∗ satisfying |q|v < 1. Then the
(proper) q-continued fraction

G(q) = K∞
n=1

qs(n−1)(S0 + S1q
n−1 + . . . + Shqh(n−1))

T0 + T1qn + . . . + Tlqln
, Si, Ti ∈ K, S0T0 6= 0,

where s ≥ 1 and s+λA > 0, has an approximation measure (exponent)
µ = sκ/κν(s + Aλ) where A = max{l, (s + h)/2}.

The results imply, for example, irrationality measures µ = 3/(3 +
2λ) for the famous Ramanujan-Selberg continued fractions
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and for Eisenstein’s continued fraction
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related to the Jacobi Theta functions.
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